EE 508
Lecture 32

Leapfrog Networks
Transconductor Design



Review from last lecture

Leapfrog Filters
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Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though
the real benefits and limitations of the structure are often not articulated



Review from last lecture
Implications of Theorem 1
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Good doubly-terminated LC networks often much less sensitive to
most component values in the passband than are cascaded biquads !

This is a major advantage of the LC networks but can not be applied practically
in most integrated applications or even in pc-board based designs



Doubly-terminated Ladder Network with Low Passband Sensitivities
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Lossless LC Network

1
V, = (11 _13)22 Complete set of independent equations
that characterize this filter

Solution of this set of equations is tedious

All sensitivity properties of this
L =(Ve—-V5) Y, circuit are inherently embedded in
V. =1.7 ) these equations!
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%\Hg%éﬁ'orrpol\l%sémgt 1e set of equations and disassociate them from

the circuit from where they came
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Review from last lecture

Bandpass Leapfrog Structures

Consider lowpass to bandpass transformations

Un-normalized
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Review from last lecture

Bandpass Leapfrog Structures

Bandpass Leapfrog Structure obtained by replacing integrators
by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be
retained at the image frequencies of the bandpass filter

1 sBW 1 sBW
- 7 2 2 2
S, ST+W, s, Ta s +saBW +w,
Integrators map to bandpass Lossy integrators map to bandpass
biquads with infinite Q biquads with finite Q

Invariably the resistance spread or the capacitance spread increases with Q

* Does this imply that the area will get very large if Q gets large?

« But what about infinite Q?

«  Will infinite Q biquads be unstable?

* |s this a problem ?



Bandpass Leapfrog Structures
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Bandpass Leapfrog Structures
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Integrators Corresponding to Third-order lowpass
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Biquads Cor respondlng to Lossless Network

Sixth-order bandpass
leapfrog filter



Bandpass Leapfrog Structures
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“Loss” at input and/or output can usually be incorporated into finite-Q
terminating biquads instead of requiring additional voltage amplifiers



Bandpass Leapfrog Structures
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Biquads Corresponding to Lossless Network

 The bandpass biquads can be implemented with various architectures and the
architecture does not ideally affect the passband sensitivity of the filter

» Integrator-based biquads are often used in integrated applications
Note the lossless biquads are infinite Q structures !
It is easy and practical to implement infinite Q biquads

Stability of the infinite Q biquads is not of concern

|s it easy to trim a bandpass Leapfrog structure ?



Bandpass Leapfrog Structures

Integrator-based biquads

Ot + o
Wy . Wy
- —s —s
+/J\ BW
—+—+ + Jw
< e [ Pagl | o
S+P _ g

+ + + +
v k- - <
— _ sT+uwy — sT+wyp —  sT+wy —1—
L o B L
S
Biquads Corresponding to Lossless Network

s(BW/C)

T(s)=

2 2
s” + Wy

T(s)=

s(BW/C)

&

V.

s> +SaBW + W,



Bandpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations
(Concept)

Infinite Q bandpass biquad
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(Not Differential)



Bandpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations

Infinite Q bandpass biquad
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Multiple inputs can be added to lossy integrator too!



Bandpass Leapfrog Structures

—_—

=

o /A A AT A
— _ sT+w; J7_—

2 2
— ST+ —— sTtuwg

c
| s

Biquads Corresponding to Lossless Network

Note the lossless biquads are infinite Q structures !

|s it easy or practical to implement infinite Q biquads?

Yes — have shown by example in g,,-C family and also easy in other
families

Are there stability concerns about the infinite Q biquads?

Stability of overall leapfrog structure of concern, not stability of individual biquads
Overall leapfrog structure is robust with low passband sensitivities !



Leapfrog Implementations

Fifth-order Lowpass Leapfrog with OTAs
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Practically can either fix g,,s and vary capacitors or fix capacitors and vary g,,'s



Some leapfrog properties
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What can be said about sensitivities of parameters such as band edges of
leapfrog filters? If these sensitivities are not at or near 0, are they at least

very small?

No! Nothing can be said about these sensitivities and they are not
necessarily any smaller than what one may have for other structures such

as cascaded biquads

Instead of having components (such as L's or C’s) in the image of the lossless
ladder network there are circuits such as integrators or biquads with more than
one characterization parameters. Are the sensitivities of |T(jw)| to these
components also 0 at frequencies where the “parent” passive filter are 07

Yes! The following theorem addresses this issue in the case of integrators



Theorem: If f(u) is a function of a variable u where u=x,x,, then
f _ of f
S, =S; +S,

It can be shown that if the unity gain frequency of an integrator
which may be expressed (for example) as 1/RC, then the transfer
function magnitude sensitivity to both R and C vanish at frequencies

where the sensitivity to |, vanishes



Leapfrog Filters
A Seminal Contribution
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A valuable contribution ?
A timely contribution ?
A clever idea?
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Would someone else have come up with it had
Girling and Good not made the discovery?
Example of unlikely publication making major

disclosure
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Transconductor Design

Transconductor-based filters depend directly on the g,, of the transconductor

Feedback is not used to make the filter performance insensitive to the
transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the
linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors
because of speed, area, and power penalties



Seminal Work on the OTA

OTA Obsoletes Op Amp

by C.F Wheatley
H.A. Wittlinger

From:

1969 N.E.C. PROCEEDINGS
December 1969



Current Mirror Op Amp W/O CMFB
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Basic OTA based upon differential pair
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Differential output OTA based upon differential pair
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CMFB needed for the two output biasing current sources



Differential output OTA based upon differential pair
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CMFB needed for the two output biasing current sources



Telescoplc Cascode OTA
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Current Mirror Bias
Current Mirror Bias

VSS

Standard p-channel Cascode Mirror Wide-Swing p-channel Cascode Mirror

» Current-Mirror p-channel Bias to Eliminate CMFB
* Only single-ended output available



Telescopic Cascode OTA
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CMFB needed



Single-ended High-Frequency TA
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Signal Swing and Linearity
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Ideal Scenario:

Completely Linear over Input and Output Range



Signal Swing and Linearity
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Realistic Scenario:
* Modest Nonlinearity throughout Input Range

» But operation will be quite linear over subset of this range



Signal Swing and Linearity
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Linearity of Amplifiers
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Strongly dependent upon linearity of transconductance of differential pair



Differential Input Pairs
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MOS Differential Pair
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MOS Differential Pair

Vo e (T )

Vo e O =

What values of V, will cause all of the current to be steered to the left or the right ?
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Transfer Characteristics of MOS Differential Pair
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Q-point Calculations for MOS Differential Pair

I,  MC,W 9
1=l (v,)

ot | 1o
Vv, —||:|\/|1 |V|2:||_ v, 1

VS Vs = \/ﬁ =

MCo W
IT
Observe !

Vax = i\/EVEB




Transfer Characteristics of MOS Differential Pair
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Vg affects linearity

How linear is the amplifier ?



How linear is the amplifier ?
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Consider the fit line:
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How linear is the amplifier ?
ol,,
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How linear is the amplifier ?

D1




How linear is the amplifier ?

t It can be shown that the deviation
from the line in % is given by

2
% deviation (V% )
| 0 =100%] 1-4/1- 4EB

- Vd
Vd/VEB 0 Vd/VEB 0 Vd/VEB 0
0.02 0.005 0.22 0.607 0.42 2.23
0.04 0.020 0.24 0.723 0.44 2.45
0.06 0.045 0.26 0.849 0.46 2.68
0.08 0.080 0.28 0.985 0.48 2.92
0.1 0.125 0.3 1.13 0.5 3.18
0.12 0.180 0.32 1.29 0.52 3.44
0.14 0.245 0.34 1.46 0.54 3.71
0.16 0.321 0.36 1.63 0.56 4.00
0.18 0.406 0.38 1.82 0.58 4.30

0.2 0.501 0.4 2.02 0.6 4.61



How linear is the amplifier ?

X % deviation

A 1% deviation from the straight line occurs at

V,=0.3Vg anda0.1% variation occurs at V= Ves
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What swings on drain currents are typical when
using the differential pair in an amplifier?

ID1

0-5VEB1

Assume the differential amplifier is the input stage to an op amp with gain Av and
signal swing Vg 1p,
The differential swing at the input is thus

v _VOUTpp
INpp~™ AV




What swings on drain currents are typical when
using the differential pair in an amplifier?
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If the ampilifier is the simple differential amplifier with current source loads

2|DC%
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Vour 290 ZMDQ
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Vg2 AH_EM 'VE“‘ Vidl2 Av =+ AVEB1

V Npp =(/1\/OUTpp )VEB1
d)“ If A=.01V" and Voyrpp,=9V,
| ViNpp=0-05VEB+

This results in a very small nonlinearity and a very small change in current
When used in two-stage structure, even much smaller!



Programmable Filter Structures

‘C"O‘ =

C

Often want to program or trim filters

Applicable in wide variety of filter architectures (here showing integrator-based)

Attractive to do this by adjusting g, , in part, because g,, can be
continuously adjustable with some transconductance devices



What input range is possible when using the tail
current to program the OTA (i.e. after WIL fixed)?

o 6 i,

VOUT

-Vig/2 *{ [I/h M;_] }‘ Vial2
Vg4

LY
/ VEes1 S~
( ) 1% Linear =
Ir
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2L
w w Vo =% (i)
9 = IUCOX T VEB - \/E ;UCox - ‘ MCW i

L
Input signal swing decreases linearly with decreases in g, for fixed W/L
One decade reduction in g, results in one decade decrease in signal swing
One decade reduction in g,, requires two decade decrease in I;
Though MOS OTA can have very good single swing with large Vg, very limited
tail current programmability with basic MOS OTA
There are, however, other ways to program MOS OTA without big penalty in
signal swing
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Stay Safe and Stay Healthy !







